当前位置: > 首页 > 高中作文 > 高考作文 > 正文

高等数学基本知识作文 高等数学基本知识点文案

2019-03-10 高考作文 类别:叙事 3000字

下面是文案网小编分享的高等数学基本知识作文 高等数学基本知识点文案,以供大家学习参考。

高等数学基本知识作文  高等数学基本知识点文案

高等数学基本知识作文 高等数学基本知识点文案:

一、函数与极限
1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:aA。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N
⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。
⑶、全体整数组成的集合叫做整数集。记作Z。
⑷、全体有理数组成的集合叫做有理数集。记作Q。
⑸、全体实数组成的集合叫做实数集。记作R。
集合的表示方法
⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合
⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系
⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作AB(或BA)。。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:
①、任何一个集合是它本身的子集。即AA
②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算
⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。)
即A∪B={xx∈A,或x∈B}。
⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。
即A∩B={xx∈A,且x∈B}。
⑶、补集:
①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。
②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集。简称为集合A的补集,记作CUA。
即CUA={xx∈U,且xA}。
集合中元素的个数
⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
⑵、用card来表示有限集中元素的个数。例如A={a,b,c},则card(A)=3。
⑶、一般地,对任意两个集合A、B,有
card(A)+card(B)=card(A∪B)+card(A∩B)
我的问题:
1、学校里开运动会,设A={xx是参加一百米跑的同学},B={xx是参加二百米跑的同学},C={xx是参加四百米跑的同学}。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。⑴、A∪B;⑵、A∩B。
2、在平面直角坐标系中,集合C={(x,y)y=x}表示直线y=x,从这个角度看,集合D={(x,y)方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。
3、已知集合A={x1≤x≤3},B={x(x-1)(x-a)=0}。试判断B是不是A的子集?是否存在实数a使A=B成立?
4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?
5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗?
2、常量与变量⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。
区间的名称区间的满足的不等式区间的记号区间在数轴上的表示闭区间a≤x≤b[a,b]开区间a<x<b(a,b)半开区间a<x≤b或a≤x<b(a,b]或[a,b)
以上我们所述的都是有限区间,除此之外,还有无限区间:
[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;
(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;
(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞
注:其中-∞和+∞,分别读作\"负无穷大\"和\"正无穷大\",它们不是数,仅仅是记号。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母\"f\"、\"F\"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。
⑵、函数相等
由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法
a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2
b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:
3、函数的简单性态⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。
注:一个函数,如果在其整个定义域内有界,则称为有界函数
例题:函数cosx在(-∞,+∞)内是有界的.
⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。如果函数在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。
例题:函数=x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。
⑶、函数的奇偶性
如果函数对于定义域内的任意x都满足=,则叫做偶函数;如果函数对于定义域内的任意x都满足=-,则叫做奇函数。
注:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。
⑷、函数的周期性
对于函数,若存在一个不为零的数l,使得关系式对于定义域内任何x值都成立,则叫做周期函数,l是的周期。
注:我们说的周期函数的周期是指最小正周期。
例题:函数是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。
4、反函数⑴、反函数的定义:设有函数,若变量y在函数的值域内任取一值y0时,变量x在函数的定义域内必有一值x0与之对应,即,那末变量x是变量y的函数.这个函数用来表示,称为函数的反函数.
注:由此定义可知,函数也是函数的反函数。
⑵、反函数的存在定理:若在(a,b)上严格增(减),其值域为R,则它的反函数必然在R上确定,且严格增(减).
注:严格增(减)即是单调增(减)
例题:y=x2,其定义域为(-∞,+∞),值域为[0,+∞).对于y取定的非负值,可求得x=±.若我们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反函数。如果我们加上条件,要求x≥0,则对y≥0、x=就是y=x2在要求x≥0时的反函数。即是:函数在此要求下严格增(减).
⑶、反函数的性质:在同一坐标平面内,与的图形是关于直线y=x对称的。
例题:函数与函数互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x对称的。如右图所示:
5、复合函数复合函数的定义:若y是u的函数:,而u又是x的函数:,且的函数值的全部或部分在的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数及复合而成的函数,简称复合函数,记作,其中u叫做中间变量。

高等数学基本知识作文 高等数学基本知识点文案:

复习是高考数学教学的关键部分,它不仅是对数学知识系统全面的整合与巩固,下面是查字典数学网编辑的高考数学复习资料,供参考,祝大家高考大捷~
高考数学复习资料精选推荐:
(一)
任一x∈Ax∈B,记作AB
AB,BAA=B
AB={xx∈A,且x∈B}
AB={xx∈A,或x∈B}
card(AB)=card(A)+card(B)-card(AB)
(1)命题
原命题若p则q
逆命题若q则p
否命题若p则q
逆否命题若q,则p
(2)四种命题的关系
(3)AB,A是B成立的充分条件
BA,A是B成立的必要条件
AB,A是B成立的充要条件
1.集合元素具有①确定性②互异性③无序性
2.集合表示方法①列举法②描述法
③韦恩图④数轴法
3.集合的运算
⑴A∩(B∪C)=(A∩B)∪(A∩C)
⑵Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
4.集合的性质
⑴n元集合的子集数:2n
真子集数:2n-1;非空真子集数:2n-2
(二)
圆的切线方程
(1)已知圆.
①若已知切点在圆上,则切线只有一条,利用垂直关系求斜率
②过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.
③斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线.
线线平行常用方法总结:
(1)定义:在同一平面内没有公共点的两条直线是平行直线。
(2)公理:在空间中平行于同一条直线的两只直线互相平行。
(3)初中所学平面几何中判断直线平行的方法
(4)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。
(5)线面垂直的性质:如果两直线同时垂直于同一平面,那么两直线平行。
(6)面面平行的性质:若两个平行平面同时与第三个平面相交,则它们的交线平行。
线面平行的判定方法:
⑴定义:直线和平面没有公共点.
(2)判定定理:若不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行
(3)面面平行的性质:两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面
(4)线面垂直的性质:平面外与已知平面的垂线垂直的直线平行于已知平面
高考数学复习资料(三)
判定两平面平行的方法
(1)依定义采用反证法
(2)利用判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。
(3)利用判定定理的推论:如果一个平面内有两条相交直线平行于另一个平面内的两条直线,则这两平面平行。
(4)垂直于同一条直线的两个平面平行。
(5)平行于同一个平面的两个平面平行。
证明线与线垂直的方法
(1)利用定义(2)线面垂直的性质:如果一条直线垂直于这个平面,那么这条直线垂直于这个平面的任何一条直线。
证明线面垂直的方法
(1)线面垂直的定义
(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。
(3)线面垂直的判定定理2:如果在两条平行直线中有一条垂直于平面,那么另一条也垂直于这个平面。
(4)面面垂直的性质:如果两个平面互相垂直那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
(5)若一条直线垂直于两平行平面中的一个平面,则这条直线必垂直于另一个平面
判定两个平面垂直的方法:
(1)利用定义
(2)判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。
夹在两个平行平面之间的平行线段相等
要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
经过平面外一点有且仅有一个平面与已知平面平行
两条直线被三个平行平面所截,截得的对应线段成比例。
高考数学复习资料就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!!

高等数学基本知识作文 高等数学基本知识点文案:

第一部分:极限
一、极限概念的发展
分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态。早在中国古代,极限的朴素思想和应用就已在文献中有记载。例如,3世纪中国数学家刘徽的割圆术,就是用圆内接正多边形周长的极限是圆周长这一思想来近似地计算圆周率□的。随着微积分学的诞生,极限作为数学中的一个概念也就明确提出。但最初提出的这一概念是含糊不清的,因此在数学界引起不少争论甚至怀疑。直到19世纪,由A.-L.柯西、K.(T.W.)外尔斯特拉斯等人的工作,才将其置于严密的理论基础。
之上,从而得到举世一致的公认。
凡本质上与极限概念有关的数学分支统称为分析数学,以区别于完全不用这一概念的代数学。几何学的各分支绝大部分也直接或间接地与极限概念密切相关。
极限可分为数列极限和函数极限,分别定义如下。
首先介绍刘徽的\"割圆术\",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=62的9次方边形,利用不等式An+1AAn+2[(An+1)-An](n=1,2,3....)得到圆周率=3927\/1250约等于3.14159265......。
数列极限:
定义:设是一数列,如果存在常数a,当n无限增大时,an无限接近(或趋近)于a,则称数列收敛,a称为的极限,或称数列收敛于a,记为liman=a。或:an→a,当n→∞。
函数极限:
设f为定义在[a,+∞)上的函数,A为定数。若对任给的ε0,存在正数M(=a),使得当xM时有:
f(x)-Aε,
则称函数f当x趋于+∞时以A为极限,记作
limf(x)=A或f(x)-A(x-+∞)
举两个例子说明一下
1、0.999999……=1?
谁都知道1\/3=0.333333……,而两边同时乘以3就得到1=0.999999……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。
2、“无理数”算是什么数?
我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。
结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。
类似的根源还在物理中(实际上,从科学发展的历程来看,物理可能才是真正的发展动力),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出。
真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师,这对我们今天中学教师界而言,不能不说是意味深长的。
二、极限理论读理工和经济的人都知道,从初等数学到高等数学的第一个坎就是微积分的极限理论。对极限理论的理解和处理是专业学数学和其他科系学数学的分水岭之一,这就是微积分教学中臭名昭著的数列极限ε(伊普西龙)——δ(德尔塔)理论(epsilon——δ,函数极限为epsilon——Delta理论)。这个ε(伊普西龙)——δ(德尔塔)(Delta)理论诲涩难懂,令一拨刚从初等数学跳到高等数学的学生焦头烂额。包括数学系的学生,一些人到了毕业,还对为什么要用如此抽象的ε(伊普西龙)——δ(德尔塔)(Delta)理论极限来描述微积分的极限理论的不甚了了。以数列f(n)的极限为L为例,ε(伊普西龙)——δ(德尔塔)理论是这么表述的:对一个任意给定的实数ε>0(epsilon),存在一个相应的正整数N,当n>N时,|f(n)-L|<ε成立。我们就认为L是f(n)的极限。
微积分的极限理论的核心是,如果一个数列或函数无限地接近于一个常数,我们就说这个数是这个数列或函数的极限。由于可用原数列或函数减去极限常数而构造新的数列或函数,问题就可变为“一个数列或函数无限地接近于0”,也就是微积分学的精髓无穷小量。数学家以外的人一般就认为这个无穷小量就是0。这里关键的东西是“无限地接近于”的表述。什么是无限地接近?一般人可以说就是要多近就有多近。在其他学科尤其是社会学科这么讲也说得过去了,但是数学家对它不满意,他们是一群追求逻辑完美的人,这样含糊的定性分析不能让他们止步。你说毛主席和林彪在文革开始不也是要多近就有多近吗,后来不是照样掰了?数学家要的是完备的定量分析,这就是说,给你一个以0为极限的数列或函数,凭什么来度量它和0“要多近就有多近”?ε(伊普西龙)——δ(德尔塔)(Delta)理论就是要给出一个判定准则。
陈景润的讲座让众人耳目一新。他先引庄子《天下篇》的“一尺之棰,日取其半,万世不竭。”说无限的思想从我们老祖宗那里就有啦。大家不是都说这个ε(伊普西龙)——δ(德尔塔)(Delta)理论难懂吗?那现在我就用ε(伊普西龙)——δ(德尔塔)理论来试试庄子这个中国命题,看看在座不是专门学数学的人能不能也听得懂这个ε(伊普西龙)——δ(德尔塔)。几百人的大教室里座无虚席,鸦雀无声,都想见识一下陈景润怎么剃这个刺头。陈景润说,“一尺之棰,日取其半,万世不竭。”说的就是微积分学中的无穷小,也就是每天切割棒棰,最后棒棰长度的极限为0。ε(伊普西龙)——δ(德尔塔)理论翻译成庄子的话应该是,“一尺之棰,日取其半,切到某一天,没有了。”注意,这里有和没有,决定于我们的观测水平。如果用肉眼看,可能分到500天就看不到了,我们就认为没有了。但是换上一台显微镜来看,又可以看得到了。于是我们继续切,再切到10000天,这台显微镜也看不到了。但是换上更高倍的显微镜,还是看得见。我们就继续切下去。ε(伊普西龙)——δ(德尔塔)理论说的是,只要你给一个分辨率,不论是多么精确的显微镜,我总能给一个天数,当分到那一天之后,你的观测工具就看不见了。于是,对任何数列或函数,都用这把尺子去量,以分辨它的极限是不是0。满足这把尺子,极限为0,反之则不是。这就是ε(伊普西龙)——δ(德尔塔)理论无穷小——极限为0的实质。在“一尺之棰,日取其半,万世不竭”这个具体问题里,L=0;f(n)=1/(2^n):等分一尺之棰n天以后的长度;ε:任意给出的长度(分辨率);N:达到这个长度(分辨率)所需要的天数。
三、极限基本知识在微积分的入门课程中会首先接触到极限这个概念,在英文的wikibook中有一篇介绍极限的文章,可作为入门的参考。这篇介绍文章包括了一些基本的概念,也介绍了极限在更高级的数学领域中的应用。
函数的极限:引子
假设f(x)是一个实函数,C是一个实数,那么
表示f(x)可以任意地靠近L,只要我们让x充分靠近c。此时,我们说当x趋向c时,函数f(x)的极限是L。值得特别指出的是,这个定义在的时候同样是成立的。事实上,即使f(x)在c点没有定义,我们仍然可以定义上述的极限。
以下两个例子或许对理解这个概念有所帮助:
考虑函数在x趋向2的时候的性质,此时f(x)在x=2这点是有定义的,f(2)=0.4。
f(1.9)f(1.99)f(1.999)f(2)f(2.001)f(2.01)f(2.1)0.41210.40120.40010.40.39980.39880.3882
当x趋向2的时候,函数值趋向0.4,因此我们有极限。在这种情况下,即函数在某一点的取值和当x趋向这一点的极限值相同的时候,我们称f在x=c这一点是连续的。当然,这是相当特殊的情况。
考虑
那么当x趋于2的时候,g(x)的极限与前面的f(x)相同,都是0.4。但是请注意,这就是说,g(x)在x=2是不连续。
或者考虑这样一个例子,使得f(x)在x=c时没有定义:
当x趋于1时,f(x)是没有定义的,但极限存在,即:
f(0.9)f(0.99)f(0.999)f(1.0)f(1.001)f(1.01)f(1.1)1.951.991.999undef2.0012.0102.10
在的情况下,x可以任意靠近1,从而f(x)的极限为2。
实变量实值函数在有限处的极限:形式定义
形式上讲,极限可以这样定义:
命f是一个定义于包含c的开区间(或此开区间剔除c)上的实值函数,命L是一个实数,那么
表示对于任意的,都存在一个对应的使得:当x满足时总有成立。
实变量实值函数在无穷远处的极限
与函数趋于某个给定值时的极限概念相关的是函数在无穷远处的概念。这个概念不能从字面上直接理解为,x距离无穷远越来越小的状态,因为无穷不是一个给定的数,也不能比较距离无穷的远近。因此,我们用x越来越大(如果讨论正无穷时)来替代。
例如考虑.
f(100)=1.9802
f(1000)=1.9980
f(10000)=1.9998
当x非常大的时候,f(x)的值会趋于2。事实上,f(x)与2之间的距离可以变得任意小,只要我们选取一个足够大的x就可以了。此时,我们称f(x)趋向于(正)无穷时的极限是2。可以写为
形式上,我们可以这样定义:
当且仅当对于任意的,存在n使得只要xn,总有。注意其中的n可能是与相关的。类似地,我们也可以定义。
如果考虑将f的定义域推广到扩展的实数轴,那么函数在无穷远的极限也可以看作在给定点的极限的特例。
实数序列的极限
考虑这个序列(sequence):,通过观察可以发现,这一列数字趋向1.8,也就是我们所说的极限。
形式地讲,假设是一列实数,那么实数L称为这个序列的极限,即
当且仅当对于任意的,存在一个自然数N0,使得对于任意的nN0,都有成立。注意这里的N0可能依赖于。
直观地说,这就说明序列的元素(element)越来越靠近L,因为上面的绝对值也可以用来刻画距离。当然这并不是说每一项都比前一项更为靠近。而且更一般地说,不是所有的序列都有极限的。如果一个序列是有极限的,我们称其为收敛的,否则称为发散的。可以证明,如果一个序列是收敛的,那么它有且仅有一个极限。
事实上,序列的极限和函数(function)的极限之间的关系是相当密切的。一方面,序列的极限可以直接理解为一个定义在自然数集合上的函数趋于无穷时候的极限。另一方面,一个函数在x处的极限(如果存在),与序列的极限是相同的。
拓扑网的极限
在引入网的概念下,上述的定义可以毫无障碍地推广到任何拓扑空间。事实上,现代数学中的极限概念就是定义在拓扑空间上的,上述的例子都是拓扑空间的具体化。
第二部分:微积分
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。
牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。
微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。
前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。
不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。
其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼茨早10年左右,但是正式公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。
应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。
直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。
任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、科西……
欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。
微积分的基本内容
研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。
本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。

高等数学基本知识作文 高等数学基本知识点文案:

一、圆的相关概念
1、圆的定义
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示
以点O为圆心的圆记作“⊙O”,读作“圆O”
二、点和圆的位置关系
设⊙O的半径是r,点P到圆心O的距离为d,则有:
dr点P在⊙O内;
d=r点P在⊙O上;
dr点P在⊙O外。
三、弦、弧等与圆有关的定义
(1)弦
连接圆上任意两点的线段叫做弦。(如图中的AB)
(2)直径
经过圆心的弦叫做直径。(如图中的CD)
(3)半圆、同圆、同心圆、等圆
半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
同圆:圆心相同且半径相等的圆叫做同圆。
同心圆:圆心相同,半径不相等的两个圆叫做同心圆。
等圆:能够互相重合的两个圆叫做等圆。
(4)弧、等弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。
能够互相重合的弧叫做等弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
四、圆的对称性
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
五、弧、弦、弦心距、圆心角之间的关系定理
1、圆心角
顶点在圆心的角叫做圆心角。
圆心角的度数与它所对的弧的度数相等。
2、弦心距
从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
六、垂径定理及其推论
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:
过圆心
垂直于弦
直径平分弦知二推三
平分弦所对的优弧
平分弦所对的劣弧
七、确定圆的条件
1、过三点的圆
不在同一直线上的三个点确定一个圆。
2、三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心
三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
八、圆周角定理及其推论
1、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半,同弧或等弧所对的圆周角相等。
推论1:同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、圆内接四边形性质(四点共圆的判定条件)
1.圆内接四边形对角互补;
2.圆内接四边形的外角等于它的内对角。
九、直线与圆的位置关系
直线和圆有三种位置关系,具体如下:
(1)相交:直线和圆有两个公共点时,叫做直线与圆相交,这时直线叫做圆的割线,公共点叫做交点;
(2)相切:直线和圆有唯一公共点时,叫做直线与圆相切,这时直线叫做圆的切线,这个公共点叫做切点。
(3)相离:直线和圆没有公共点时,叫做直线与圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
直线l与⊙O相交dr;
直线l与⊙O相切d=r;
直线l与⊙O相离dr;
十、切线的判定和性质
1、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线。
2、切线的性质定理
圆的切线垂直于经过切点的半径。
十一、切线长定理
1、切线长
在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理
从圆外一点引圆的两条切线,它们的切线长相等。
圆心和圆外这一点的连线平分两条切线的夹角。
3、弦切角定理
弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角。
弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角。
即:∠BAC=∠ADC
十二、三角形的内切圆
1、三角形的内切圆
与三角形的各边都相切的圆叫做三角形的内切圆。
2、三角形的内心
三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
十三、正多边形和圆
1、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系
只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
十四、与正多边形有关的概念
1、正多边形的中心
正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径
正多边形的外接圆的半径叫做这个正多边形的半径。
3、正多边形的边心距
正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4、中心角
正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
十五、正多边形的对称性
1、正多边形的轴对称性
正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
2、正多边形的中心对称性
边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
3、正多边形的画法
先用量角器或尺规等分圆,再做正多边形。
十六、弧长及扇形面积
1、弧长公式
n°的圆心角所对的弧长的计算公式为
2、扇形面积公式
其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。
3、圆锥的侧面积
其中l是圆锥的母线长,r是圆锥的底面半径。
十七、圆幂定理(拓展)
切割线定理:从圆外一点引圆的切线和割线,切线长是割线和这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
如图,PT为⊙O切线,PAB、PCD为⊙O割线,则
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
如图,AB、CD为⊙O的两条弦,相交于点E,则


结语:在日复一日的学习、工作或生活中,大家都跟作文打过交道吧,写作文可以锻炼我们的独处习惯,让自己的心静下来,思考自己未来的方向。如何写一篇有思想、有文采的《高等数学基本知识》作文呢?以下是小编为大家整理的《高等数学基本知识》优秀作文,欢迎大家借鉴与参考,希望对大家写《高等数学基本知识》有所帮助